ENHANCED AERO-SERVO-ELASTIC (EASE) MODEL

Carlos E. S. Cesnik University of Michigan

AePW 4 – SciTech 2024 Orlando, Florida

Overview

- Next step from Pazy wing for large deflection workgroup
- Allows for growth
 - Isolated cantilever swept wing
 - Isolated swept wing with pitch and/or plunge motions
 - Swept wing as part of a half aircraft configuration
 - At any point: open and/or closed loop studies

EASE model's dimensions and instrumentation

10 wing TE control surfaces that can be grouped and 1 HTP elevator

Note: rotation point = aircraft c.g.

Data collected in experiments

The following data was collected from sensors in the experiment:

- Accelerations, angular rates and Euler angles from IMU units on wing and fuselage
- Acceleration at fuselage nose
- Pitch angle from encoder at the rotation point
- Forces and moments on tail root and at rotation point from load cells
- Strain at wing root. Can be used to recover moment at that station.
- Spanwise strain variation from **fiber optic system**. Can be used to recover wing shape.
- Control surfaces deflection from encoders

The following control system data was saved:

- Frame time
- Commanded control action
- Tracking reference
- Controller flags
- Optimizer performance: time, number of iterations, feasibility status

Configurations for currently available data

- GVT (lab and/or WT)
 - Isolated wing
 - Isolated fuselage + HTP
 - Half-aircraft model
- Steady aeroelastic characterization at different body pitch angles and speeds
 - Isolated fuselage + HTP
 - Half-aircraft model
- Individual and group control surface characterization
- Maneuver Stretched Vertical (MVS) maneuver in open- and closed-loop (MPC) control

Experimental setup

Sample data: open-loop static results (fixed pitch)

UM/NAST model overestimates loads on wing and tail

Potential reasons

1

1

- Effect of pod gaps on wing are not taken into consideration
- Wind tunnel wall interference

Additional data has been collected and mode adjusted for that

Sample data: open-loop dynamic results (fixed pitch)

