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Overview

* Next step from Pazy wing for large deflection workgroup
« Allows for growth
« |solated cantilever swept wing
* Isolated swept wing with pitch and/or plunge motions
« Swept wing as part of a half aircraft configuration

« At any point: open and/or closed loop studies



EASE model’s dimensions and instrumentation
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Data collected in experiments

The following data was collected from sensors in the experiment: o Accelerometer

« Accelerations, angular rates and Euler angles from IMU units on wing e IMU
and fuselage ® Load cell
» Acceleration at fuselage nose 8 Bitch atiitude
« Pitch angle from encoder at the rotation point
* Forces and moments on tail root and at rotation point from load cells [ Rotary encoder
« Strain at wing root. Can be used to recover moment at that station. B Bending strain

« Spanwise strain variation from fiber optic system. Can be used to
recover wing shape.
» Control surfaces deflection from encoders

The following control system data was saved:

* Frame time

« Commanded control action

« Tracking reference

« Controller flags

» Optimizer performance: time, number of iterations, feasibility status
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Configurations for currently available data | ( i _K\D_

 GVT (lab and/or WT)

* Isolated wing
* Isolated fuselage + HTP
- Half-aircraft model

« Steady aeroelastic characterization at different
body pitch angles and speeds

* Isolated fuselage + HTP
 Half-aircraft model

« Individual and group control surface
characterization

« Maneuver Stretched Vertical (MVS) maneuver
In open- and closed-loop (MPC) control




Experimental setup
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Sample data: open-loop static results (fixed pitch)
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Sample data: open-loop dynamic results (fixed pitch)
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Frequency sweep 0.5-10 Hz, 20 deg amplitude

Different wing deformed shape
leads to different dynamic behavior
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